Generalizing the meaning of derivatives and integrals of any order differential equations by fuzzy-order derivatives and fuzzy-order integrals
نویسندگان
چکیده
منابع مشابه
Fuzzy laplace transform on two order derivative and solving fuzzy two order differential equations
متن کامل
asymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولEvaluation of supersingular integrals : Second - order boundary derivatives ‡
The boundary integral representation of second-order derivatives of the primary function involves secondorder (hypersingular) and third-order (supersingular) derivatives of the Green’s function. By defining these highly singular integrals as a difference of boundary limits, interior minus exterior, the limiting values are shown to exist. With a Galerkin formulation, coincident and edge-adjacent...
متن کاملfuzzy laplace transform on two order derivative and solving fuzzy two order differential equations
متن کامل
Numerical Solution of fuzzy differential equations of nth-order by Adams-Bashforth method
So far, many methods have been presented to solve the rst-order di erential equations. But, not many studies have been conducted for numerical solution of high-order fuzzy di erential equations. In this research, First, the equation by reducing time, we transform the rst-order equation. Then we have applied Adams-Bashforth multi-step methods for the initial approximation of one order di erentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Science
سال: 2019
ISSN: 1018-3647
DOI: 10.1016/j.jksus.2017.12.014