Generalizing Impact Computations for the Autoregressive Spatial Interaction Model

نویسندگان

چکیده

We extend the impact decomposition proposed by LeSage and Thomas-Agnan (2015) in spatial interaction model to a more general framework, where sets of origins destinations can be different, relevant attributes characterizing do not coincide with those destinations. These extensions result three flow data configurations which we study extensively: square, rectangular, noncartesian cases. propose numerical simplifications compute impacts, avoiding inversion large filter matrix. considerably reduce computation time; they also useful for prediction. Furthermore, define local measures intra, origin, destination network effects. Interestingly, these aggregated at different levels analysis. Finally, illustrate our methodology case using remittance flows all over world.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized autoregressive model preserving spatial discontinuities for

Cet article traite de l’estimation spectrale locale à partir de signaux radio-fréquence obtenus en imagerie medicale par échographie ultrasonore. Du fait de la nature particulière des signaux RF (signaux aléatoires fortement bruités et nonstationnaires et présence de plusieurs milieux tissulaires), l’objectif principal est de régulariser l’estimation paramétrique locale tout en préservant d’éve...

متن کامل

Spatial-Temporal Autoregressive Dynamic Model

Although a myriad of methods have been advanced to tackle spatial and temporal structures in data separately, it becomes difficult to analyze these data using classical linear regression models when spatial-temporal structures coexist, especially when the data size is relatively large. In this article, we demonstrate a simple to implement method to handle spatial-temporal structures simultaneou...

متن کامل

Information Theory Estimators for the First-Order Spatial Autoregressive Model

Information theoretic estimators for the first-order spatial autoregressive model are introduced, small sample properties are investigated, and the estimator is applied empirically. Monte Carlo experiments are used to compare finite sample performance of more traditional spatial estimators to three different information theoretic estimators, including maximum empirical likelihood, maximum empir...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geographical Analysis

سال: 2023

ISSN: ['0016-7363', '1538-4632']

DOI: https://doi.org/10.1111/gean.12358