GeneralizedT–Qrelations and the open spin-sXXZ chain with nondiagonal boundary terms
نویسندگان
چکیده
منابع مشابه
Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms
We consider the integrable open XX quantum spin chain with nondiagonal boundary terms. We derive an exact inversion identity, using which we obtain the eigenvalues of the transfer matrix and the Bethe Ansatz equations. For generic values of the boundary parameters, the Bethe Ansatz solution is formulated in terms of Jacobian elliptic functions.
متن کاملSolving the open XXZ spin chain with nondiagonal boundary terms at roots of unity
We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η = iπ p+1 , p = 1 , 2 , . . ., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-Ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin2 transfer matrix can be expressed in terms of a lower-spin transf...
متن کاملBethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms
We propose a set of conventional Bethe Ansatz equations and a corresponding expression for the eigenvalues of the transfer matrix for the open spin2 XXZ quantum spin chain with nondiagonal boundary terms, provided that the boundary parameters obey a certain linear relation.
متن کاملT - Q relation and exact solution for the XYZ chain with general nondiagonal boundary terms
We propose that the Baxter’s Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j → ∞ limit of the corresponding transfer matrix with spin-j (i.e., (2j + 1)-dimensional) auxiliary space. The associated T -Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundame...
متن کاملComplete Bethe Ansatz solution of the open spin-s XXZ chain with general integrable boundary terms
We consider the open spin-s XXZ quantum spin chain with N sites and general integrable boundary terms for generic values of the bulk anisotropy parameter, and for values of the boundary parameters which satisfy a certain constraint. We derive two sets of Bethe Ansatz equations, and find numerical evidence that together they give the complete set of (2s + 1)N eigenvalues of the transfer matrix. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2012
ISSN: 1742-5468
DOI: 10.1088/1742-5468/2012/10/p10003