Generalized Zhou inverses in rings

نویسندگان

چکیده

We introduce and study a new class of generalized inverses in rings. An element ring R has Zhou inverse if there exists b∈R such that bab=b,b∈comm2(a),an−ab∈J(R) for some n∈N. We...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Inverses of a Sum in Rings

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of 1−ba in terms of generalized inverses of 1−ab. In our development we prove that the Drazin index of 1 − ba is equal to the Drazin index of 1 − ab. 2000 Mathematics subject classification. primary 15A09; secondary 16U99.

متن کامل

Partial orders in rings based on generalized inverses – unified theory

Article history: Received 20 August 2014 Accepted 3 January 2015 Available online xxxx Submitted by Y. Wei MSC: 06A06 15A09 16U99

متن کامل

The absorption laws for the generalized inverses in rings

In this paper, it is given equivalent conditions for the absorption laws in terms of the Moore-Penrose, group, core inverse, core inverse dual, {1}, {1,2}, {1,3}, and {1,4} inverses in rings. The results given here extend the results of [X. Liu, H. Jin, and D.S. Cvetković-Ilić. The absorption laws for the generalized inverses. Appl. Math. Comp., 219:2053–2059, 2012.].

متن کامل

Further results on generalized inverses in rings with involution

Let R be a unital ring with an involution. Necessary and sufficient conditions for the existence of the Bott-Duffin inverse of a ∈ R relative to a pair of self-adjoint idempotents (e, f) are derived. The existence of a {1, 3}-inverse, {1, 4}-inverse, and the Moore-Penrose inverse of a matrix product is characterized, and explicit formulas for their computations are obtained. Some applications t...

متن کامل

Generalized Inverses and Applications

Fredholm’s method to solve a particular integral equation in 1903, was probably the first written work on generalized inverses. In 1906, Moore formulated the generalized inverse of a matrix in an algebraic setting, which was published in 1920, and in the thirties von Neumann used generalized inverses in his studies of continuous geometries and regular rings. Kaplansky and Penrose, in 1955, inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2021

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.1914072