Generalized weighted Besov spaces on the Bessel hypergroup

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Bessel Capacities and Rectangular Differentiation in Besov Spaces

We consider the differentiation of integrals of functions in Besov spaces with respect to the basis of arbitrarily oriented rectangular parallelepipeds in R. We study almost everywhere convergence with respect to Bessel capacities. These outer measures are more sensitive than n-dimensional Lebesgue measure, and therefore we improve the positive results in [4].

متن کامل

Multipliers on Weighted Besov Spaces of Analytic Functions

We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces

This paper is concerned with global solutions of the generalized Navier-Stokes equations. The generalized Navier-Stokes equations here refer to the equations obtained by replacing the Laplacian in the Navier-Stokes equations by the more general operator (−∆) with α > 0. It has previously been shown that any classical solution of the d-dimensional generalized NavierStokes equations with α ≥ 1 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2006

ISSN: 0972-6802

DOI: 10.1155/2006/587016