منابع مشابه
Computation of Convolutions and Discrete Fourier Transforms by Polynomial Transforms
Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have the convolution property and can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for computing one-d...
متن کاملFree Generalized Gamma Convolutions
The so-called Bercovici-Pata bijection maps the set of classical infinitely divisible laws to the set of free infinitely divisible laws. The purpose of this work is to study the free infinitely divisible laws corresponding to the classical Generalized Gamma Convolutions (GGC). Characterizations of their free cumulant transforms are derived as well as free integral representations with respect t...
متن کاملApplications of Generalized Convolutions Associated with the Fourier and Hartley Transforms
In this paper we present new generalized convolutions with weight-function associated with the Fourier and Hartley transforms, and consider applications. Namely, using the generalized convolutions, we construct normed rings on the space L(R), provide the sufficient and necessary condition for the solvability of a class of integral equations of convolution type, and receive the explicit solution...
متن کاملSparse Generalized Fourier Transforms ∗
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...
متن کامل2 Generalized Cauchy - Stieltjes Transforms and Markov Transforms
We express the generalized Cauchy-Stieltjes transforms of some particular Beta distributions depending on a positive parameter λ as λ-powered Cauchy-Stieltjes transforms of some probability measures. The Cauchy-Stieltjes transforms of the latter measures are shown to be the geometric mean of the Cauchy-Stieltjes transform of the Wigner law together with another one. Moreover, they are absolutel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1997
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171297000045