Generalized topologies for statistical metric spaces
نویسندگان
چکیده
منابع مشابه
On Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملAlexandro and Scott Topologies for Generalized Metric Spaces
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces. Every generalized metric space can be isometrically embedded in a complete function space by means of a metric version of the categorical Yoneda embedding. This simple fact gives naturally rise to: 1. a topology for generalized metric spaces which for arbitrary preorders corresponds to the Alexandroo ...
متن کاملComplete Generalized Metric Spaces
The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...
متن کاملOn Generalized Probabilistic Metric Spaces
In the present paper we study some generalized probabilistic metric spaces. Relationships with another deterministic and probabilistic metric structures are analyzed. A contraction condition for mappings with values into such a generalized probabilistic metric space is given. Fixed point results are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1962
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-51-1-9-21