Generalized System Identification with Stable Spline Kernels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized System Identification with Stable Spline Kernels

Regularized least-squares approaches have been successfully applied to linear system identification. Recent approaches use quadratic penalty terms on the unknown impulse response defined by stable spline kernels, which control model space complexity by leveraging regularity and bounded-input bounded-output stability. This paper extends linear system identification to a wide class of nonsmooth s...

متن کامل

Regularized spectrum estimation using stable spline kernels

This paper presents a new regularized kernel-based approach for the estimation of the second order moments of stationary stochastic processes. The proposed estimator is defined by a Tikhonov-type variational problem. It contains few unknown parameters which can be estimated by cross validation solving a sequence of problems whose computational complexity scales linearly with the number of noisy...

متن کامل

Image super - resolution with B - Spline kernels

A novel approach to image super-resolution is described in this paper. By modeling our image acquisition system with a Spline sampling kernel, we are able to retrieve from the samples some statistical information about the observed continuous scene before its acquisition (irradiance light-field). This information, called continuous moments, allows to register exactly a set of low-resolution ima...

متن کامل

Spline Wavelets for System Identification

The paper introduces spline wavelets as a modelling tool for system identification and proposes the technique of consistent output prediction using wavelets for estimating system parameters. It suggests that direct weighted summation of projections in approximation space could be used for deriving consistent output prediction in case model structure is built with spline wavelets. This can be vi...

متن کامل

System identification with generalized orthonormal basis functions

A least-squares identification method is studied that estimates a finite number of expansion coefficients in the series expansion of a transfer function, where the expansion is in terms of recently introduced generalized basis functions. The basis functions are orthogonal in 8$, and generalize the pulse, Laguerre and Kautz bases. One of their important properties is that, when chosen properly, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2018

ISSN: 1064-8275,1095-7197

DOI: 10.1137/16m1070517