Generalized stochastic Lagrangian paths for the Navier-Stokes equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic-lagrangian Particle System for the Navier-stokes Equations

Abstract. This paper is based on a formulation of the Navier-Stokes equations developed in arxiv:math.PR/0511067 (to appear in Commun. Pure Appl. Math), where the velocity field of a viscous incompressible fluid is written as the expected value of a stochastic process. In this paper, we take N copies of the above process (each based on independent Wiener processes), and replace the expected val...

متن کامل

Stochastic 2-D Navier-Stokes Equation

In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier-Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions-Prodi solutions to the deterministic Navier-Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantl...

متن کامل

Malliavin Calculus for the Stochastic 2d Navier Stokes Equation

Abstract. We consider the incompressible, two dimensional Navier Stokes equation with periodic boundary conditions under the effect of an additive, white in time, stochastic forcing. Under mild restrictions on the geometry of the scales forced, we show that any finite dimensional projection of the solution possesses a smooth density with respect to Lebesgue measure. We also show that under natu...

متن کامل

Stochastic Least-Action Principle for the Incompressible Navier-Stokes Equation

We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that...

متن کامل

Lagrangian Structures for the Stokes, Navier-stokes and Euler Equations

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

سال: 2018

ISSN: 2036-2145,0391-173X

DOI: 10.2422/2036-2145.201602_006