Generalized sign Fourier uncertainty

نویسندگان

چکیده

We consider a generalized version of the sign uncertainty principle for Fourier transform, first proposed by Bourgain, Clozel and Kahane in 2010 revisited Cohn Goncalves 2019. In our setup, signs function its transform resonate with generic given $P$ outside ball. One essentially wants to know if how soon this resonance can happen, when facing suitable competing weighted integral condition. The original problem corresponds case $P \equiv 1$. Surprisingly, even such rough we are able identify sharp constants some cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Fourier -

We study a generalization of the Fourier-Mukai transform for smooth projective varieties. We nd conditions under which the transform satisses an inversion theorem. This is done by considering a series of four conditions on such transforms which increasingly constrain them. We show that a necessary condition for the existence of such transforms is that the rst Chern classes must vanish and the d...

متن کامل

Sparse Generalized Fourier Transforms ∗

Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...

متن کامل

Generalized Haar – Fourier Transform

We give a new generalization for Haar functions. The generalization starts from the Walsh-like functions and based on the connection between the original Walsh and Haar systems. We generalize the Haar– Fourier Transform too.

متن کامل

Uncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform

The uncertainty principles of the 1-D fractional Fourier transform and the 1-D linear canonical transform have been derived. We extend the previous works and discuss the uncertainty principle for the two-dimensional affine generalized Fourier transform (2-D AGFFT). We find that derived uncertainty principle of the 2-D AGFFT can also be used for determining the uncertainty principles of many 2-D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2022

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.202105_026