Generalized series of Bessel functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities Involving Generalized Bessel Functions

Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.

متن کامل

Generalized Bessel functions for p-radial functions

Suppose that d ∈ N and p > 0. In this paper, we study the generalized Bessel functions for the surface {v ∈ Rd : |v|p = 1}, introduced by D.St.P. Richards. We derive a recurrence relation for these functions and utilize a series representation to relate them to the classical symmetric functions. These generalized Bessel functions are symmetric with respect to the action of the hyperoctahedral g...

متن کامل

Jordan-type Inequalities for Generalized Bessel Functions

In this note our aim is to present some Jordan-type inequalities for generalized Bessel functions in order to extend some recent results concerning generalized and sharp versions of the well-known Jordan’s inequality. Acknowledgements: Research partially supported by the Institute of Mathematics, University of Debrecen, Hungary. The author is grateful to Prof. Lokenath Debnath for a copy of pap...

متن کامل

Integral Representation for Neumann Series of Bessel Functions

A closed integral expression is derived for Neumann series of Bessel functions — a series of Bessel functions of increasing order — over the set of real numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2002

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(01)00505-2