Generalized Scott Topology on Sets with Families of Pre-orders

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On invariant sets topology

In this paper, we introduce and study a new topology related to a self mapping on a nonempty set.Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets ofX related to f, i.e. f := fA X : f(A) Ag P(X) is a topology on X. Among other things,we nd the smallest open sets contains a point x 2 X. Moreover, we find the relations between fand To f . For insta...

متن کامل

Quantale-valued fuzzy Scott topology

The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...

متن کامل

Generated topology on infinite sets by ultrafilters

Let $X$ be an infinite set, equipped with a topology $tau$. In this paper we studied the relationship between $tau$, and ultrafilters on $X$. We can discovered, among other thing, some relations of the Robinson's compactness theorem, continuity and the separation axioms. It is important also, aspects of communication between mathematical concepts.

متن کامل

A kind of fuzzy upper topology on L-preordered sets

Considering a commutative unital quantale L as the truth value table and using the tool of L-generalized convergence structures of stratified L-filters, this paper introduces a kind of fuzzy upper topology, called fuzzy S-upper topology, on L-preordered sets. It is shown that every fuzzy join-preserving L-subset is open in this topology. When L is a complete Heyting algebra, for every completel...

متن کامل

Generalized Kurepa and Mad Families and Topology

Closing a Kurepa family under finite intersection yields a Kurepa family of the same cardinality, so we may assume N = {Nα : α ∈ μ} is closed under finite intersection. For each N ∈ N let m(N) = {α : Nα ⊂ N}. Since N is a Kurepa family, m(N) is a countable subset of μ. Also, m(N1 ∩N2) = m(N1) ∩m(N2) and so K = {m(N) : N ∈ N and m(N) is infinite} is a Kurepa family of cardinality no greater than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Theoretical Computer Science

سال: 2014

ISSN: 1571-0661

DOI: 10.1016/j.entcs.2014.01.009