منابع مشابه
Multiplicities of edge subrings
For a bipartite graph G we are able to characterize the complete intersection property of the edge subring in terms of the multiplicity and we give optimal bounds for this number. We give a method to obtain a regular sequence for the atomic ideal of G, when G is embedded on an orientable surface. We also give a graph theoretical condition for the edge subring associated with G to be Gorenstein....
متن کاملRegularity of second power of edge ideals
Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.
متن کاملNetworks with arbitrary edge multiplicities
One of the main characteristics of real-world networks is their large clustering. Clustering is one aspect of a more general but much less studied structural organization of networks, i.e. edge multiplicity, defined as the number of triangles in which edges, rather than vertices, participate. Here we show that the multiplicity distribution of real networks is in many cases scale-free, and in ge...
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملBinomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2017
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-017-0781-3