Generalized Mercer Kernels and Reproducing Kernel Banach Spaces
نویسندگان
چکیده
منابع مشابه
Reproducing kernel Hilbert spaces and Mercer theorem
We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel.
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملSampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
We investigate the construction of all reproducing kernel Hilbert spaces of functions on a domain Ω ⊂ R that have a countable sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel Hilbert spaces that have a prescribed sampling set. Similar problems are considered for reproducing kernel Banach spaces, but now with respect to Λ as a p-sampling set. Unlike the general p-frames, we pr...
متن کاملRadial kernels and their reproducing kernel Hilbert spaces
We describe how to use Schoenberg’s theorem for a radial kernel combined with existing bounds on the approximation error functions for Gaussian kernels to obtain a bound on the approximation error function for the radial kernel. The result is applied to the exponential kernel and Student’s kernel. To establish these results we develop a general theory regarding mixtures of kernels. We analyze t...
متن کاملReproducing Kernel Banach Spaces with the l1 Norm
Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the following properties: (1) B possesses an l norm in the sense that B is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the American Mathematical Society
سال: 2019
ISSN: 0065-9266,1947-6221
DOI: 10.1090/memo/1243