Generalized Invariant Monotonicity and Generalized Invexity of Nondifferentiable Functions
نویسندگان
چکیده
منابع مشابه
Monotonicity and Generalized ρ, θ -η Invexity of Nondifferentiable Functions
New concepts of generalized ρ, θ -η invex functions for non-differentiable functions and generalized ρ, θ -η invariant monotone operators for set-valued mappings are introduced. The relationships between generalized ρ, θ -η invexity of functions and generalized ρ, θ -η invariant monotonicity of the corresponding Clarke’s subdifferentials are studied. Some of our results are extension and improv...
متن کاملGeneralized Invexity and Generalized Invariant Monotonicity
In this paper, several kinds of invariant monotone maps and generalized invariant monotone maps are introduced. Some examples are given which show that invariant monotonicity and generalized invariant monotonicity are proper generalizations of monotonicity and generalized monotonicity. Relationships between generalized invariant monotonicity and generalized invexity are established. Our results...
متن کاملNondifferentiable multiobjective programming under generalized dI-invexity
In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-...
متن کاملGeneralized Minimax Programming with Nondifferentiable (G, β)-Invexity
We consider the generalized minimax programming problem (P) in which functions are locally Lipschitz (G, β)-invex. Not only G-sufficient but also G-necessary optimality conditions are established for problem (P). With G-necessary optimality conditions and (G, β)-invexity on hand, we construct dual problem (DI) for the primal one (P) and prove duality results between problems (P) and (DI). These...
متن کاملGroup invariant Colombeau generalized functions
We give characterizations for generalized functions invariant under certain group actions, such as groups of rotations and the Lorentz group. In the case of rotations, it answers an open question by M. Oberguggenberger in [3]. Also general one-parameter groups are considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2009
ISSN: 1029-242X
DOI: 10.1155/2009/393940