Generalized Integration Operators from Weak to Strong Spaces of Vector-valued Analytic Functions

نویسندگان

چکیده

For a fixed nonnegative integer $m$, an analytic map $\varphi$ and function $\psi$, the generalized integration operator $I^{(m)}_{\varphi,\psi}$ is defined by \[ I^{(m)}_{\varphi,\psi} f(z) = \int_0^z f^{(m)}(\varphi(\zeta)) \psi(\zeta) \, d\zeta \] for $X$-valued $f$, where $X$ Banach space. Some estimates norm of $I^{(m)}_{\varphi,\psi} \colon wA^p_{\alpha}(X) \to A^p_{\alpha}(X)$ are obtained. In particular, it shown that Volterra $J_b bounded if only A^2_{\alpha} A^2_{\alpha}$ in Schatten class $S_p(A^2_{\alpha})$ $2 \leq p \lt \infty$ $\alpha \gt -1$. corresponding results established Hardy spaces Fock spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operators on Weighted Spaces of Vector-valued Analytic Functions

Let V be an arbitrary system of weights on an open connected subset G of CN (N ≥ 1) and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let HVb (G, E) and HV0 (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings φ : G → G and operator-valued analytic mappings Ψ : G → B (E) whi...

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

Nuclear Operators on Spaces of Continuous Vector-Valued Functions

Abstract Let Ω be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of all E-valued continuous functions on Ω under supnorm. In this paper we study when nuclear operators on C(Ω, E) spaces can be completely characterized in terms of properties of their representing vector measures. We also show that if F is a Banach space and if T : C(Ω, E) → F is a ...

متن کامل

0 Integral Operators on Spaces of Continuous Vector - valued functions

Let X be a compact Hausdorff space, let E be a Banach space, and let C(X,E) stand for the Banach space of E-valued continuous functions on X under the uniform norm. In this paper we characterize Integral operators (in the sense of Grothendieck) on C(X,E) spaces in term of their representing vector measures. This is then used to give some applications to Nuclear operators on C(X,E) spaces. AMS(M...

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2021

ISSN: ['1027-5487', '2224-6851']

DOI: https://doi.org/10.11650/tjm/201208