Generalized Harnack Inequality for Nonhomogeneous Elliptic Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Harnack principle and elliptic Harnack inequality

We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.

متن کامل

Stability of Elliptic Harnack inequality

We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.

متن کامل

Some remarks on the elliptic Harnack inequality

In this note we give three short results concerning the elliptic Harnack inequality (EHI), in the context of random walks on graphs. The first is that the EHI implies polynomial growth of the number of points in balls, and the second that the EHI is equivalent to an annulus type Harnack inequality for Green’s functions. The third result uses the lamplighter group to give a counterexample concer...

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...

متن کامل

Harnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds

We consider second-order linear elliptic operators of nondivergence type which is intrinsically defined on Riemannian manifolds. Cabré proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabré’s result and, as a consequence, we give another proof to Harnack inequality of Yau for positive harmonic functions on Riemannian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2014

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-014-0817-y