Generalized Grey Target Decision Method for Mixed Attributes Based on Kullback-Leibler Distance
نویسندگان
چکیده
منابع مشابه
Model Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...
متن کاملModel Averaging Based on Kullback-leibler Distance.
This paper proposes a model averaging method based on Kullback-Leibler distance under a homoscedastic normal error term. The resulting model average estimator is proved to be asymptotically optimal. When combining least squares estimators, the model average estimator is shown to have the same large sample properties as the Mallows model average (MMA) estimator developed by Hansen (2007). We sho...
متن کاملUsing Kullback-Leibler distance for performance evaluation of search designs
This paper considers the search problem, introduced by Srivastava cite{Sr}. This is a model discrimination problem. In the context of search linear models, discrimination ability of search designs has been studied by several researchers. Some criteria have been developed to measure this capability, however, they are restricted in a sense of being able to work for searching only one possibl...
متن کاملSymmetrizing the Kullback-Leibler Distance
We define a new distance measure the resistor-average distance between two probability distributions that is closely related to the Kullback-Leibler distance. While the KullbackLeibler distance is asymmetric in the two distributions, the resistor-average distance is not. It arises from geometric considerations similar to those used to derive the Chernoff distance. Determining its relation to we...
متن کاملMultiresolution Image Registration Based on Kullback-Leibler Distance
This paper extends our prior work on multi-modal image registration based on the a priori knowledge of the joint intensity distribution that we expect to obtain, and Kullback-Leibler distance. This expected joint distribution can be estimated from pre-aligned training images. Experimental results show that, as compared with the Mutual Information and Approximate Maximum Likelihood based registr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2018
ISSN: 1099-4300
DOI: 10.3390/e20070523