Generalized geometry and non-symmetric metric gravity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearization of Moffat’s Symmetric Complex Metric Gravity

In this paper we investigate a complex symmetric generalization of general relativity and in particular we investigate its linearized field equations. We begin by reviewing some basic definitions and structures in Moffat’s symmetric complex metric field theory of gravity. We then move on to derive the linearized retarded complex field equations. In addition to this we also derive a linearizatio...

متن کامل

Generalized Symmetric Divergence Measures and Metric Spaces

Abstract Recently, Taneja [7] studied two one parameter generalizations of J-divergence, Jensen-Shannon divergence and Arithmetic-Geometric divergence. These two generalizations in particular contain measures like: Hellinger discrimination, symmetric chi-square divergence, and triangular discrimination. These measures are well known in the literature of Statistics and Information theory. In thi...

متن کامل

Metric from Non-Metric Action of Gravity

The action of general relativity proposed by Capovilla, Jacobson and Dell is written in terms of SO(3) gauge fields and gives Ashtekar's constraints for Einstein gravity. However, it does not depend on the space-time metric nor its signature explicitly. We discuss how the space-time metric is introduced from algebraic relations of the constraints and the Hamiltonian by focusing our attention on...

متن کامل

Note on Non-metric Gravity

We discuss a class of alternative gravity theories that are specific to four dimensions, do not introduce new degrees of freedom, and come with a physical motivation. In particular we sketch their Hamiltonian formulation, and their relation with some earlier constructions. Email address: [email protected]. Supported by VR.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fortschritte der Physik

سال: 2016

ISSN: 0015-8208

DOI: 10.1002/prop.201500080