Generalized Functional Linear Models With Semiparametric Single-Index Interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Functional Linear Models with Semiparametric Single-Index Interactions.

We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor i...

متن کامل

Generalized Partially Linear Single-Index Models

The typical generalized linear model for a regression of a response Y on predictors (X;Z) has conditional mean function based upon a linear combination of (X;Z). We generalize these models to have a nonparametric component, replacing the linear combination T 0 X + T 0 Z by 0( T 0 X) + T 0 Z, where 0( ) is an unknown function. We call these generalized partially linear single-index models (GPLSI...

متن کامل

Semiparametric efficiency for partially linear single-index regression models

We calculate semiparametric efficiency bounds for a partially linear single-index model using a simple method developed by [1]. We show that this model can be used to evaluate the efficiency of several existing estimators.

متن کامل

Efficient Inference in Semiparametric Generalized Linear Models

for Y and Φ nonempty subsets of l. The covariate (X,Z) has an unknown joint distribution G ∈ G, a nonempty collection of distributions. Suppose from now on that the true but unknown parameters are (θ, ρ). We are interested in the efficient estimation of the regression parameter θ in the presence of the nuisance parameter γ = (G, ρ) based on the independent and identically distributed observatio...

متن کامل

Semiparametric Generalized Linear Models: Bayesian Approaches

Generalized linear models are one of the most widely used tools of the data analyst. However, the model assumes that the structure of the regression relationship between the response and the covariates is linear on a known transformed scale. We focus here on diierent methods to perform the same type of analyses. These involve using nonparametric models to determine the relationship between the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2010

ISSN: 0162-1459,1537-274X

DOI: 10.1198/jasa.2010.tm09313