Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces

In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...

متن کامل

Fractional Integral Operators in Generalized Morrey Spaces Defined on Metric Measure Spaces

We derive some necessary and sufficient conditions for the boundedness of fractional integral operators in generalized Morrey spaces defined on metric measure spaces. îâäæñéâ. áŽéðçæùâIJñèæŽ äëéæŽê éâðîæçñè ïæãîùââIJäâ àŽêïŽäôãîñèæ àŽêäëàŽáëâIJñè ûæèŽáñîæ æêðâàîŽèñîæ ëìâîŽðëîæï öâéëïŽäôãîñèëIJæï ŽñùæèâIJâèæ ᎠïŽçéŽîæïæ ìæîëIJâIJæ.

متن کامل

Notes on Commutators of Fractional Integral Operatros on Generalized Morrey Spaces

We show that b ∈ BMO( n) if and only if the commutator [b, Iα] of the multiplication operator by b and the fractional integral operator Iα is bounded from generalized Morrey spaces Lp,φ( n) to Lq,φ q/p ( n), where φ is non-decreasing, and 1 < p < ∞, 0 < α < n and 1/q = 1/p− α/n.

متن کامل

Generalized Stummel Class and Morrey Spaces

We revisit the Stummel class and its relation with Morrey spaces. We reformulate a result of Ragusa and Zamboni [11] and then discuss its generalization, as proposed by Eridani and Gunawan [4]. An improvement of the results previously obtained by Eridani and Gunawan is obtained and some extensions are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces

سال: 2015

ISSN: 2314-8896,2314-8888

DOI: 10.1155/2015/594323