Generalized Fractional Integral Operators on Generalized Local Morrey Spaces
نویسندگان
چکیده
منابع مشابه
Generalized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملFractional Integral Operators in Generalized Morrey Spaces Defined on Metric Measure Spaces
We derive some necessary and sufficient conditions for the boundedness of fractional integral operators in generalized Morrey spaces defined on metric measure spaces. îâäæñéâ. áŽéðçæùâIJñèæŽ äëéæŽê éâðîæçñè ïæãîùââIJäâ àŽêïŽäôãîñèæ àŽêäëàŽáëâIJñè ûæèŽáñîæ æêðâàîŽèñîæ ëìâîŽðëîæï öâéëïŽäôãîñèëIJæï ŽñùæèâIJâèæ ᎠïŽçéŽîæïæ ìæîëIJâIJæ.
متن کاملNotes on Commutators of Fractional Integral Operatros on Generalized Morrey Spaces
We show that b ∈ BMO( n) if and only if the commutator [b, Iα] of the multiplication operator by b and the fractional integral operator Iα is bounded from generalized Morrey spaces Lp,φ( n) to Lq,φ q/p ( n), where φ is non-decreasing, and 1 < p < ∞, 0 < α < n and 1/q = 1/p− α/n.
متن کاملBoundedness of Multilinear Integral Operators and Their Commutators on Generalized Morrey Spaces
متن کامل
Generalized Stummel Class and Morrey Spaces
We revisit the Stummel class and its relation with Morrey spaces. We reformulate a result of Ragusa and Zamboni [11] and then discuss its generalization, as proposed by Eridani and Gunawan [4]. An improvement of the results previously obtained by Eridani and Gunawan is obtained and some extensions are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2015
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2015/594323