Generalized diffusion equation with fractional derivatives within Renyi statistics
نویسندگان
چکیده
منابع مشابه
Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملGeneralized Fractional Statistics
We link, by means of a semiclassical approach, the fractional statistics of particles obeying the Haldane exclusion principle to the Tsallis statistics and derive a generalized quantum entropy and its associated statistics. PACS number(s): 05.20.-y, 05.30.-d, 05.40.+j, 05.60.+w The generalized non-extensive statistics and the fractional exclusion statistics have excited great interest because o...
متن کاملGeneralized Boundary Conditions for the Time-Fractional Advection Diffusion Equation
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive...
متن کاملDavey-Stewartson Equation with Fractional Coordinate Derivatives
We have used the homotopy analysis method (HAM) to obtain solution of Davey-Stewartson equations of fractional order. The fractional derivative is described in the Caputo sense. The results obtained by this method have been compared with the exact solutions. Stability and convergence of the proposed approach is investigated. The effects of fractional derivatives for the systems under considerat...
متن کاملFokker–Planck equation with fractional coordinate derivatives
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2016
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4962159