GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Derivations with Annihilator Conditions in Prime Rings

Let R be a noncommutative prime ring with its Utumi ring of quotients U , C = Z(U) the extended centroid of R, F a generalized derivation of R and I a nonzero ideal of R. Suppose that there exists 0 = a ∈ R such that a(F ([x, y]) − [x, y]) = 0 for all x, y ∈ I, where n ≥ 2 is a fixed integer. Then one of the following holds: 1. char (R) = 2, R ⊆ M2(C), F (x) = bx for all x ∈ R with a(b − 1) = 0...

متن کامل

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

Generalized Derivations of Prime Rings

Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...

متن کامل

Generalized Derivations on Prime Near Rings

Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...

متن کامل

Prime Lie Rings of Generalized Derivations of Commutative Rings

Let R be a commutative ring with identity. By a Bres̃ar generalized derivation of R we mean an additive map g : R→ R such that g (xy) = g (x) y + xd (y) for all x, y ∈ R, where d is a derivation of R. And an additive mapping f : R → R is called a generalized derivation in the sense of Nakajima if it satisfies f(xy) = f(x)y + xf(y) − xf(1)y for all x, y ∈ R. In this paper we extend some results o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2011

ISSN: 1015-8634

DOI: 10.4134/bkms.2011.48.5.917