Generalized Cylinder with Geodesic and Line of Curvature Parameterizations

نویسندگان

چکیده

Constructing a surface with geodesic or line of curvature parameterization is an important problem in many practical applications. The present paper aims to design generalized cylinder that parametrized along the geodesics and lines curves Euclidean 3- space. main results show rectifying right respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations

Efficient methods to compute intrinsic distances and geodesic paths have been presented for various types of surface representations, most importantly polygon meshes. These meshes are usually assumed to be well-structured and manifold. In practice, however, they often contain defects like holes, gaps, degeneracies, non-manifold configurations – or they might even be just a soup of polygons. The...

متن کامل

Geodesic metric spaces and generalized nonexpansive multivalued mappings

In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...

متن کامل

Geodesic Flows in Manifolds of Nonpositive Curvature

I. Introduction-a quick historical survey of geodesic flows on negatively curved spaces. II. Preliminaries on Riemannian manifolds A. Riemannian metric and Riemannian volume element B. Levi Civita connection and covariant differentiation along curves C. Parallel translation of vectors along curves D. Curvature E. Geodesics and geodesic flow F. Riemannian exponential map and Jacobi vector fields...

متن کامل

Rapid Mixing of Geodesic Walks on Manifolds with Positive Curvature

We introduce a Markov chain for sampling from the uniform distribution on a Riemannian manifoldM, which we call the geodesic walk. We prove that the mixing time of this walk on any manifold with positive sectional curvature Cx(u, v) bounded both above and below by 0 < m2 ≤ Cx(u, v) ≤ M2 < ∞ is O∗ ( M2 m2 ) . In particular, this bound on the mixing time does not depend explicitly on the dimensio...

متن کامل

a comparison of teachers and supervisors, with respect to teacher efficacy and reflection

supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamental journal of mathematics and applications

سال: 2022

ISSN: ['2645-8845']

DOI: https://doi.org/10.33401/fujma.1020437