Generalizations of Bernoulli numbers and polynomials
نویسندگان
چکیده
منابع مشابه
Generalizations of Bernoulli Numbers and Polynomials
The concepts of Bernoulli numbers B n , Bernoulli polynomials B n (x), and the generalized Bernoulli numbers B n (a, b) are generalized to the one B n (x; a, b, c) which is called the generalized Bernoulli polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B n , B n (x), B n (a, b), and B n (x; a, b, c) are established.
متن کاملGeneralizations of the Bernoulli and Appell Polynomials
We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper)...
متن کاملCongruences concerning Bernoulli numbers and Bernoulli polynomials
Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...
متن کاملSome generalizations of 2D Bernoulli polynomials
As a generalization of 2D Bernoulli polynomials, neo-Bernoulli polynomials are introduced from a point of view involving the use of nonexponential generating functions. Their relevant recurrence relations, the differential equations satisfied by them and some other properties are obtained. Especially, we obtain the relationships between them and neo-Hermite polynomials. We also study some other...
متن کاملIdentities of Bernoulli Numbers and Polynomials
In the field of Laurent series Q((T)), the series B = T/(e T − 1) is contained in the formal power series ring Q[[T ]]. The i-th Bernoulli number B
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2003
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171203112070