Generalization of Hilbert and Hardy-Hilbert integral inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hardy-hilbert Integral Inequalities with Some Parameters

In this paper, we give a new Hardy-Hilbert’s integral inequality with some parameters and a best constant factor. It includes an overwhelming majority of results of many papers.

متن کامل

On Multiple Hardy-hilbert Integral Inequalities with Some Parameters

where the constant factor [π/ sin(π/p)]p is also the best possible. Hardy-Hilbert inequalities are important in analysis and in their applications (see [7]). In recent years, many results (see [1, 3, 8–10]) have been obtained in the research of Hardy-Hilbert inequality. At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multipl...

متن کامل

A Reverse Hardy-hilbert-type Integral Inequality

By estimating a weight function, a reverse Hardy-Hilbert-type integral inequality with a best constant factor is obtained. As an application, some equivalent forms and some particular results have been established.

متن کامل

Some Integral Inequalities Related to Hilbert ’

We prove some integral inequalities involving the Laplace transform. These are sharper than some known generalizations of the Hilbert integral inequality including a recent result of Yang.

متن کامل

Hilbert–pachpatte Type Multidimensional Integral Inequalities

In this paper we use a new approach to obtain a class of multivariable integral inequalities of Hilbert type from which we can recover as special cases integral inequalities obtained recently by Pachpatte and the present authors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2005

ISSN: 1331-4343

DOI: 10.7153/mia-08-25