Generalised Mycielski graphs, signature systems, and bounds on chromatic numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalised Mycielski Graphs and Bounds on Chromatic Numbers

We prove that the coindex of the box complex B(H) of a graph H can be measured by the generalised Mycielski graphs which admit a homomorphism to it. As a consequence, we exhibit for every graph H a system of linear equations solvable in polynomial time, with the following properties: If the system has no solutions, then coind(B(H))+2 ≤ 3; if the system has solutions, then χ(H) ≥ 4. We generalis...

متن کامل

Bounds on the Generalised Acyclic Chromatic Numbers of Bounded Degree Graphs

We give upper bounds for the generalised acyclic chromatic number and generalised acyclic edge chromatic number of graphs with maximum degree d, as a function of d. We also produce examples of graphs where these bounds are of the correct order.

متن کامل

Circular Chromatic Number and Mycielski Graphs

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the Mycielski graph of G. Recursively define Mm(G)=...

متن کامل

Circular chromatic number for iterated Mycielski graphs

For a graph G, let M(G) denote the Mycielski graph of G. The t-th iterated Mycielski graph of G, M(G), is defined recursively by M0(G) = G and M(G)= M(Mt−1(G)) for t ≥ 1. Let χc(G) denote the circular chromatic number of G. We prove two main results: 1) Assume G has a universal vertex x, then χc(M(G)) = χ(M(G)) if χc(G − x) > χ(G − x) − 1/2 and G is not a star, otherwise χc(M(G)) = χ(M(G)) − 1/...

متن کامل

Generalised Mycielski Graphs as Topological Cliques

We prove that the coindex of the box complex B(H) of a graph H can be measured by the generalised Mycielski graphs which admit a homomorphism to it. As a consequence, we exhibit for every graph H a system of linear equations solvable in polynomial time, with the following properties: If the system has no solutions, then coind(B(H)) + 2 ≤ 3; if the system has solutions, then χ(H) ≥ 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2017

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2016.09.007