Generalised mean averaging interpolation by discrete cubic splines

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Interpolation by Cubic Splines on Triangulations

We describe an algorithm for constructing point sets which admit unique Lagrange and Hermite interpolation from the space S 1 3 (() of C 1 splines of degree 3 deened on a general class of triangulations. The triangulations consist of nested polygons whose vertices are connected by line segments. In particular, we have to determine the dimension of S 1 3 (() which is not known for arbitrary tria...

متن کامل

Geometric Hermite interpolation by cubic G1 splines

In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...

متن کامل

Geometric Interpolation by Planar Cubic G1 Splines

In this paper, geometric interpolation by G cubic spline is studied. A wide class of sufficient conditions that admit a G cubic spline interpolant is determined. In particular, convex data as well as data with inflection points are included. The existence requirements are based upon geometric properties of data entirely, and can be easily verified in advance. The algorithm that carries out the ...

متن کامل

Local Lagrange Interpolation by Bivariate C 1 Cubic Splines

Lagrange interpolation schemes are constructed based on C 1 cubic splines on certain triangulations obtained from checkerboard quad-rangulations. x1. Introduction Given a triangulation 4 of a simply connected polygonal domain , the space of C 1 cubic splines is deened by S 1 3 (4) := fs 2 C 1 (() : sj T 2 P 3 , all T 2 4g; where P 3 is the space of cubic bivariate polynomials. In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1994

ISSN: 0034-5318

DOI: 10.2977/prims/1195166276