General neighbour-distinguishing index via chromatic number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General neighbour-distinguishing index of a graph

It is proved that edges of a graph G can be coloured using χ(G) + 2 colours so that any two adjacent vertices have distinct sets of colours of their incident edges. In the case of a bipartite graph three colours are sufficient.

متن کامل

Distinguishing Edge Chromatic Number

An adjacent vertex distinguishing edge-coloring or an avd-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. We prove that every graph with maximum degree ∆ and with no isolated edges has an avd-coloring with at most ∆ + 300 colors, provided that ∆ > 1020. AMS Subject Classification: 05C15

متن کامل

The Distinguishing Chromatic Number

In this paper we define and study the distinguishing chromatic number, χD(G), of a graph G, building on the work of Albertson and Collins who studied the distinguishing number. We find χD(G) for various families of graphs and characterize those graphs with χD(G) = |V (G)|, and those trees with the maximum chromatic distingushing number for trees. We prove analogs of Brooks’ Theorem for both the...

متن کامل

Graphs with Large Distinguishing Chromatic Number

The distinguishing chromatic number χD(G) of a graph G is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. For a graph G of order n, it is clear that 1 6 χD(G) 6 n, and it has been shown that χD(G) = n if and only if G is a complete multipartite graph. This paper characterizes the graphs G of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2010

ISSN: 0012-365X

DOI: 10.1016/j.disc.2009.11.018