Gene selection algorithm by combining reliefF and mRMR

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mrmr Ba: a Hybrid Gene Selection Algorithm for Cancer Classification

The microarray technology facilitates biologist in monitoring the activity of thousands of genes (features) in one experiment. This technology generates gene expression data, which are significantly applicable for cancer classification. However, gene expression data consider as highdimensional data which consists of irrelevant, redundant, and noisy genes that are unnecessary from the classifica...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informativ...

متن کامل

A Cancer Gene Selection Algorithm Based on the K-S Test and CFS

BACKGROUND To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected...

متن کامل

ReliefF-based Multi-label Feature Selection

In recent years, multi-label learning has been used to deal with data attributed to multiple labels simultaneously and has been increasingly applied to various applications. As many other machine learning tasks, multi-label learning also suffers from the curse of dimensionality; so extracting good features using multiple labels of the datasets becomes an important step prior to classification. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Genomics

سال: 2008

ISSN: 1471-2164

DOI: 10.1186/1471-2164-9-s2-s27