Gender Recognition Through Face Using Deep Learning
نویسندگان
چکیده
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملFace Recognition using PCA, Deep Face Method
The performance process of face recognition involves the inspection study of facial features in an image, recognizing those features and comparing them to one of the many faces in the database. There are many algorithms capable of performing face recognition; such as: Principal Component Analysis, Discrete Cosine Transform, 3D recognition methods, Gabor Wavelets method etc. There were many issu...
متن کاملCoupled Deep Learning for Heterogeneous Face Recognition
Heterogeneous face matching is a challenge issue in face recognition due to large domain difference as well as insufficient pairwise images in different modalities during training. This paper proposes a coupled deep learning (CDL) approach for the heterogeneous face matching. CDL seeks a shared feature space in which the heterogeneous face matching problem can be approximately treated as a homo...
متن کاملDeep Face Recognition
The goal of this paper is face recognition – from either a single photograph or from a set of faces tracked in a video. Recent progress in this area has been due to two factors: (i) end to end learning for the task using convolutional neural networks (CNNs), and (ii) the availability of very large scale training datasets. We make two contributions: first, we show how a very large scale dataset ...
متن کاملDeepFace: Face Generation using Deep Learning
We use CNNs to build a system that both classifies images of faces based on a variety of different facial attributes and generates new faces given a set of desired facial characteristics. After introducing the problem and providing context in the first section, we discuss recent work related to image generation in Section 2. In Section 3, we describe the methods used to fine-tune our CNN and ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.05.053