Gelfand’s Trick for the Spherical Derived Hecke Algebra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spherical Hecke Algebra for Affine Kac-moody Groups I

We define the spherical Hecke algebra for an (untwisted) affine Kac-Moody group over a local non-archimedian field. We prove a generalization of the Satake isomorphism for these algebras, relating it to integrable representations of the Langlands dual affine Kac-Moody group. In the next publication we shall use these results to define and study the notion of Hecke eigenfunction for the group Ga...

متن کامل

On the Kazhdan-lusztig Basis of a Spherical Hecke Algebra

Lusztig proved that the Kazhdan-Lusztig basis of a spherical algebra can be essentially identified with the Weyl characters of the Langlands dual group. We generalize this result to the unequal parameter case. Our new proof is simple and quite different from Lusztig’s.

متن کامل

The affine Hecke algebra

1 The affine Hecke algebra 1.1 The alcove walk algebra Fix notations for the Weyl group W , the extended affine Weyl group W , and their action on Ω × h * R as in Section 2. Label the walls of the alcoves so that the fundamental alcove has walls labeled 0, 1,. .. , n and the labeling is W-equivariant (see the picture in (2.12)). The periodic orientation is the orientation of the walls of the al...

متن کامل

Hecke Algebra Actions on the Coinvariant Algebra

Two actions of the Hecke algebra of type A on the corresponding polynomial ring are introduced. Both are deformations of the natural action of the symmetric group on polynomials, and keep symmetric functions invariant. An explicit combinatorial formula is given for the resulting graded characters on the coinvariant algebra.

متن کامل

Zhedanov’s Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra

This paper builds on the previous paper by the author, where a relationship between Zhedanov’s algebra AW (3) and the double affine Hecke algebra (DAHA) corresponding to the Askey–Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW (3) with an additional relation that the Casimir operator equals an explicit constant. A similar resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnab130