Gelfand-Kirillov Dimension of Noetherian Semigroup Algebras
نویسندگان
چکیده
منابع مشابه
Simple Algebras of Gelfand - Kirillov Dimension Two
Let k be a field. We show that a finitely generated simple Goldie k-algebra of quadratic growth is noetherian and has Krull dimension 1. Thus a simple algebra of quadratic growth is left noetherian if and only if it is right noetherian. As a special case, we see that if A is a finitely generated simple domain of quadratic growth then A is noetherian and by a result of Stafford every right and l...
متن کاملNoetherian Hopf Algebra Domains of Gelfand-kirillov Dimension Two
We classify all noetherian Hopf algebras H over an algebraically closed field k of characteristic zero which are integral domains of GelfandKirillov dimension two and satisfy the condition ExtH(k, k) 6= 0. The latter condition is conjecturally redundant, as no examples are known (among noetherian Hopf algebra domains of GK-dimension two) where it fails.
متن کاملLie Algebras with Finite Gelfand-kirillov Dimension
We prove that every finitely generated Lie algebra containing a nilpotent ideal of class c and finite codimension n has Gelfand-Kirillov dimension at most cn. In particular, finitely generated virtually nilpotent Lie algebras have polynomial growth.
متن کامل∗−orderings and ∗−valuations on Algebras of Finite Gelfand-kirillov Dimension
Considerable work has been done in developing the relationship between ∗-orderings, ∗valuations and the reduced theory of Hermitian forms over a skewfield with involution [12] [13] [14] [15] [16] [23] [24]. This generalizes the well-known theory in the commutative case; e.g., see [4] [6] [7] [27]. In the commutative theory, formally real function fields provide a rich source of examples [6]. In...
متن کاملLeavitt Path Algebras of Finite Gelfand–kirillov Dimension
Groebner–Shirshov Basis and Gelfand–Kirillov dimension of the Leavitt path algebra are derived.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1993
ISSN: 0021-8693
DOI: 10.1006/jabr.1993.1255