Gaussian processes associated to infinite bead-spring networks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Gaussian Processes: On the Distributions of Infinite Networks

A general analysis of the limiting distribution of neural network functions is performed, with emphasis on non-Gaussian limits. We show that with i.i.d. symmetric stable output weights, and more generally with weights distributed from the normal domain of attraction of a stable variable, that the neural functions converge in distribution to stable processes. Conditions are also investigated und...

متن کامل

Gaussian Processes as Neural Networks

An implementation of a Gaussian process prediction mechanism using biologically plausible processes in the framework of a neural network.

متن کامل

Extremes of Gaussian processes over an infinite horizon

Consider a centered separable Gaussian process Y with a variance function that is regularly varying at infinity with index 2H ∈ (0, 2). Let φ be a ‘drift’ function that is strictly increasing, regularly varying at infinity with index β > H, and vanishing at the origin. Motivated by queueing and risk models, we investigate the asymptotics for u→∞ of the probability P (sup t≥0 Yt − φ(t) > u) as u...

متن کامل

Large deviations of infinite intersections of events in Gaussian processes

The large deviations principle for Gaussian measures in Banach space is given by the generalized Schilder's theorem. After assigning a norm ||f|| to paths f in the reproducing kernel Hilbert space of the underlying Gaussian process, the probability of an event A can be studied by minimizing the norm over all paths in A. The minimizing path f*, if it exists, is called the most probable path and ...

متن کامل

Infinite Shift-invariant Grouped Multi-task Learning for Gaussian Processes

Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2011

ISSN: 1539-6746,1945-0796

DOI: 10.4310/cms.2011.v9.n2.a8