Gaussian mixture model‐based contrast enhancement
نویسندگان
چکیده
منابع مشابه
Gaussian mixture model-based contrast enhancement
In this paper, a method for enhancing low contrast images is proposed. This method, called Gaussian Mixture Model based Contrast Enhancement (GMMCE), brings into play the Gaussian mixture modeling of histograms to model the content of the images. Based on the fact that each homogeneous area in natural images has a Gaussian-shaped histogram, it decomposes the narrow histogram of low contrast ima...
متن کاملAutomatic Image Equalization and Contrast Enhancement Using Gaussian Mixture Modelling
In this paper, we propose an adaptive image equalization algorithm which automatically enhances the contrast in an input image. The algorithm uses Gaussian mixture model (GMM) to model the image grey-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input grey-level intervals. The contrast equalized ...
متن کاملComparison of Automatic Image Contrast Enhancement Using Gaussian Mixture Model and Global Histogram Equalization
In this project, we have implemented Image Contrast Enhancement algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equaliz...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Image Processing
سال: 2015
ISSN: 1751-9667,1751-9667
DOI: 10.1049/iet-ipr.2014.0583