Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Equations with Measurable Coefficients

We investigate the unique solvability of second order parabolic equations in non-divergence form in W 1,2 p ((0, T ) × R), p ≥ 2. The leading coefficients are only measurable in either one spatial variable or time and one spatial variable. In addition, they are VMO (vanishing mean oscillation) with respect to the remaining variables.

متن کامل

Elliptic Differential Equations with Measurable Coefficients

We prove the unique solvability of second order elliptic equations in non-divergence form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable and VMO in other variables. From this result, we obtain the weak uniqueness of the martingale problem associated with the elliptic equations.

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

Lower Bounds for Measurable Chromatic Numbers

The Lovász theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on the unit sphere. There we transform the original infinite semidefinit...

متن کامل

Lower Bounds Using Kolmogorov Complexity

In this paper, we survey a few recent applications of Kolmogorov complexity to lower bounds in several models of computation. We consider KI complexity of Boolean functions, which gives the complexity of finding a bit where inputs differ, for pairs of inputs that map to different function values. This measure and variants thereof were shown to imply lower bounds for quantum and randomized decis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2020

ISSN: 1424-3199,1424-3202

DOI: 10.1007/s00028-020-00560-7