GAUSS-STEFFENSEN TYPE INEQUALITIES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Steffensen Type Inequality

Steffensen’s inequality deals with the comparison between integrals over a whole interval [a, b] and integrals over a subset of [a, b]. In this paper we prove an inequality which is similar to Steffensen’s inequality. The most general form of this inequality deals with integrals over a measure space. We also consider the discrete case.

متن کامل

Abel–type inequalities, complex numbers and Gauss–Pólya type integral inequalities

We obtain inequalities of Abel type but for nondecreasing sequences rather than the usual nonincreasing sequences. Striking complex analogues are presented. The inequalities on the real domain are used to derive new integral inequalities related to those of Gauss– Pólya type.

متن کامل

Grüss Type Inequalities Involving the Generalized Gauss Hypergeometric Functions

In this paper, we establish certain generalized Grüss type inequality for generalized fractional integral inequalities involving the generalized Gauss hypergeometric function. Moreover, we also consider their relevances for other related known results. 1. Introduction and preliminares In 1935, D. Grüss, proved the following integral inequality which gives an estimation of a product in terms of ...

متن کامل

Improving the Dynamics of Steffensen-type Methods

The dynamics of Steffesen-type methods, using a graphical tool for showing the basins of attraction, is presented. The study includes as particular cases, Steffesen-type modifications of the Newton, the two-steps, the Chebyshev, the Halley and the super– Halley iterative methods. The goal is to show that if we are interesting to preserve the convergence properties we must ensure that the deriva...

متن کامل

Generalized Gauss inequalities via semidefinite programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we obtain a less pessimistic Gauss-type bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE

سال: 2014

ISSN: 0351-336X,1857-9914

DOI: 10.37560/matbil14200081p