Gauss-Manin connections for arrangements, II: Nonresonant weights

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-manin Connections for Arrangements, Ii Nonresonant Weights

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a nonresonant complex rank one local system. Aomoto and Kita determined this GaussManin connection for arrangements in general position. We use their results and an algorithm constructed in this paper to determine this Gauss-Manin connection for all arrangements.

متن کامل

Gauss-manin Connections for Arrangements, Iv Nonresonant Eigenvalues

An arrangement is a finite set of hyperplanes in a finite dimensional complex affine space. A complex rank one local system on the arrangement complement is determined by a set of complex weights for the hyperplanes. We study the Gauss-Manin connection for the moduli space of arrangements of fixed combinatorial type in the cohomology of the complement with coefficients in the local system deter...

متن کامل

Gauss-manin Connections for Arrangements

We construct a formal connection on the Aomoto complex of an arrangement of hyperplanes, and use it to study the Gauss-Manin connection for the moduli space of the arrangement in the cohomology of a complex rank one local system. We prove that the eigenvalues of the Gauss-Manin connection are integral linear combinations of the weights which define the local system.

متن کامل

Gauss-manin Connections for Arrangements, Iii Formal Connections

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a complex rank one local system. We define formal Gauss-Manin connection matrices in the Aomoto complex and prove that, for all arrangements and all local systems, these formal connection matrices specialize to Gauss-Manin connection matrices.

متن کامل

E-factors for Gauss-manin Determinants

We define ε-factors in the de Rham setting and calculate the determinant of the Gauß-Manin connection for a family of (affine) curves and a vector bundle equipped with a flat connection. “Ordentliche Leute pflegten ihren Schatten mit sich zu nehmen, wenn sie in die Sonne gingen.” A. v. Chamisso, from ”Peter Schlemihls wundersame Geschichte”

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2005

ISSN: 1080-6377

DOI: 10.1353/ajm.2005.0018