Gate induced modulation of electronic states in monolayer organic field-effect transistor
نویسندگان
چکیده
Organic field-effect transistors with ionic liquids have attracted much attention, since the induce an intense electric field at a semiconductor interface, resulting in high concentration of charge carriers. It is expected that such strong fields and highly doped charges nontrivial effects on electronic band structures. Recently, blue shift peak wavelength photo-absorption spectra for DNBDT-monolayer transistor was experimentally observed by increasing ionic-liquid gate voltage, although origin still under debate. Therefore, we investigate hole-doping external electric-field states organic semiconducting monolayer within framework density functional theory. The calculated results show energy increased hole doping while decreases energy. We demonstrated calculations give useful information to understand spectra.
منابع مشابه
Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملAttaching organic semiconductors to gate oxides: in situ assembly of monolayer field effect transistors.
This study unveils a new tetracene derivative that forms dense, upright monolayers on the surface of aluminum oxide. These monolayers spontaneously self-organize into the active layer in nanoscale field-effect transistor devices when aluminum oxide is used as the dielectric layer. This method gives high yields of working devices that have source-drain distances that are less than 60 nm, thereby...
متن کاملGate-Field-Induced Schottky Barrier Lowering in a Nanotube Field-Effect Transistor
We propose that in nanotube field effect transistors (FETs) with small effective dielectric thickness the vertical potential drop across the nanotube diameter at finite gate bias can lower or eliminate the Schottky barrier at the electrode. This effect is demonstrated in single-walled carbon nanotube FETs fabricated on top of ultra-high-κ dielectric constant SrTiO3/Si substrates. These FETs sho...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2021
ISSN: ['1520-8842', '0003-6951', '1077-3118']
DOI: https://doi.org/10.1063/5.0058666