Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo
نویسندگان
چکیده
منابع مشابه
Controlled Drug Delivery Using Microdevices.
Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal...
متن کاملMathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle
To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...
متن کاملIn vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers
Non-invasive monitoring of gastrointestinal drug release in vivo is extremely challenging because of the limited spatial resolution and long scanning time of existing bioimaging modalities, such as X-ray radiation and magnetic resonance. Here, we report a novel microcarrier that can retain drugs and withstand the harsh conditions of gastrointestinal tract. Significantly, we can track the microc...
متن کاملSimulation of Drug Release from PLGA Particles In Vivo
Specific targeting of tissues and/or cells is essential for any type of drug delivery system because this determines the efficacy and side effects of the drug. Poly lactic-co-glycolic acids (PLGA) have long been used as biomaterials for drug delivery due to their excellent biocompatibility and biodegradability. Direct visualization of PLGA particles is feasible even within tissues, and cell spe...
متن کاملIn vivo release from a drug delivery MEMS device.
A drug delivery microelectromechanical systems (MEMS) device was designed to release complex profiles of multiple substances in order to maximize the effectiveness of drug therapies. The device is based on micro-reservoirs etched into a silicon substrate that contain individual doses of drug. Each dose is released by the electrochemical dissolution of the gold membrane that covers the reservoir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2020
ISSN: 2375-2548
DOI: 10.1126/sciadv.abb4133