GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters

نویسندگان

چکیده

We introduce a novel machine learning framework for estimating the Bayesian posteriors of morphological parameters arbitrarily large numbers galaxies. The Galaxy Morphology Posterior Estimation Network (GaMPEN) estimates values and uncertainties galaxy's bulge-to-total light ratio ($L_B/L_T$), effective radius ($R_e$), flux ($F$). To estimate posteriors, GaMPEN uses Monte Carlo Dropout technique incorporates full covariance matrix between output in its loss function. also Spatial Transformer (STN) to automatically crop input galaxy frames an optimal size before determining their morphology. This will allow it be applied new data without prior knowledge size. Training testing on galaxies simulated match $z < 0.25$ Hyper Suprime-Cam Wide $g$-band images, we demonstrate that achieves typical errors $0.1$ $L_B/L_T$, $0.17$ arcsec ($\sim 7\%$) $R_e$, $6.3\times10^4$ nJy 1\%$) $F$. GaMPEN's predicted are well-calibrated accurate ($<5\%$ deviation) -- regions parameter space with high residuals, correctly predicts correspondingly uncertainties. can apply categorical labels (i.e., classifications such as "highly bulge-dominated") predictions residuals verify those $\gtrsim 97\%$ accurate. best our knowledge, is first joint posterior distributions multiple application STN optical imaging astronomy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian sandwich posteriors for pseudo-true parameters

Under model misspecification, the MLE generally converges to the pseudo-true parameter, the parameter corresponding to the distribution within the model that is closest to the distribution from which the data are sampled. In many problems, the pseudo-true parameter corresponds to a population parameter of interest, and so a misspecified model can provide consistent estimation for this parameter...

متن کامل

A Bayesian and Machine Learning approach to estimating Influence Model parameters for IM-RO

The rise of Online Social Networks (OSNs) has caused an insurmountable amount of interest from advertisers and researchers seeking to monopolize on its features. Researchers aim to develop strategies for determining how information is propagated among users within an OSN that is captured by diffusion or influence models. We consider the influence models for the IM-RO problem, a novel formulatio...

متن کامل

Machine Learning and Image Analysis for Morphological Galaxy Classification

In this paper we present an experimental study of machine learning and image analysis for performing automated morphological galaxy classification. We have used a neural network, and a locally weighted regression method, and also we implemented homogeneous ensembles of classifiers. The ensemble of neural networks was created using the bagging ensemble method, and manipulation of input features ...

متن کامل

Estimating E-Bayesian of Parameters of two parameter Exponential Distribution

‎In this study‎, ‎E-Bayesian of parameters of two parameter exponential distribution under squared error loss function is obtained‎. ‎The estimated and the efficiency of the proposed method has been compared with Bayesian estimator using Monte Carlo simulation‎. 

متن کامل

apsis - Framework for Automated Optimization of Machine Learning Hyper Parameters

Machine learning and the algorithms used for it have become more and more complex in the past years. Especially the growth of Deep Learning architectures has resulted in a large number of hyperparameters such as the number of hidden layers or the transfer function in a neural network which have to be tuned to achieve the best possible performance. Since the result of a hyperparameter choice can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Astrophysical Journal

سال: 2022

ISSN: ['2041-8213', '2041-8205']

DOI: https://doi.org/10.3847/1538-4357/ac7f9e