Gamma factors for generalized Selberg zeta functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchy of the Selberg zeta functions

We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.

متن کامل

Selberg zeta functions for spaces of higher rank

5 Introduction In 1956 A. Selberg introduced the zeta function Z(s) = c N ≥0 (1 − e −(s+N)l(c)), Re(s) >> 0, where the first product is taken over all primitive closed geodesics in a compact Riemannian surface of genus ≥ 2, equipped with the hyperbolic metric, and l(c) denotes the length of the geodesic c. Selberg proved that the product converges if the real part of s is large enough and that ...

متن کامل

Computation of Selberg Zeta Functions on Hecke Triangle Groups

In this paper, a heuristic method to compute the Selberg zeta function for Hecke triangle groups, Gq is described. The algorithm is based on the transfer operator method and an overview of the relevant background is given.We give numerical support for the claim that the method works and can be used to compute the Selberg Zeta function on Gq to any desired precision. We also present some numeric...

متن کامل

Fundamental Domains of Gamma and Zeta Functions

Branched covering Riemann surfaces C, f are studied, where f is the Euler Gamma function and the Riemann Zeta function. For both of them fundamental domains are found and the group of cover transformations is revealed. In order to find fundamental domains, preimages of the real axis are taken and a thorough study of their geometry is performed. The technique of simultaneous continuation, introd...

متن کامل

Period Functions and the Selberg Zeta Function for the Modular Group

The Selberg trace formula on a Riemann surface X connects the discrete spectrum of the Laplacian with the length spectrum of the surface, that is, the set of lengths of the closed geodesics of on X. The connection is most strikingly expressed in terms of the Selberg zeta function, which is a meromorphic function of a complex variable s that is defined for <(s) > 1 in terms of the length spectru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1995

ISSN: 0386-2194

DOI: 10.3792/pjaa.71.148