Games characterizing Levy–Longo trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Games Characterizing Levy-Longo Trees

We present a simple strongly universal innocent game model for Levy-Longo trees i.e. every point in the model is the denotation of a unique Levy-Longo tree. The observational quotient of the model then gives a universal, and hence fully abstract, model of the pure Lazy Lambda Calculus.

متن کامل

Sequences Characterizing k-Trees

A non-decreasing sequence of n integers is the degree sequence of a 1-tree (i.e., an ordinary tree) on n vertices if and only if there are least two 1’s in the sequence, and the sum of the elements is 2(n − 1). We generalize this result in the following ways. First, a natural generalization of this statement is a necessary condition for k-trees, and we show that it is not sufficient for any k >...

متن کامل

Characterizing Trees in Concept Lattices

Concept lattices are systems of conceptual clusters, called formal concepts, which are partially ordered by the subconcept/superconcept relationship. Concept lattices are basic structures used in formal concept analysis. In general, a concept lattice may contain overlapping clusters and need not be a tree. On the other hand, tree-like classification schemes are appealing and are produced by sev...

متن کامل

Characterizing rigid simplicial actions on trees

We extend Forester’s rigidity theorem so as to give a complete characterization of rigid group actions on trees (an action is rigid if it is the only reduced action in its deformation space, in particular it is invariant under automorphisms preserving the set of elliptic subgroups). Let T be a simplicial tree with a cocompact action of a group G (i.e. the BassSerre tree associated to a decompos...

متن کامل

Characterizing trees in property-oriented concept lattices

Property-oriented concept lattices are systems of conceptual clusters called property-oriented concepts, which are partially ordered by the subconcept/superconcept relationships. Property-oriented concept lattices are basic structures used in formal concept analysis. In general, a property-oriented concept lattice may contain overlapping clusters and is not to be a tree construction. Additional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2004

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(03)00405-5