Galois module structure for dihedral extensions of degree 8: Realizable classes over the group ring

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF EXTENSIONS OF DEGREE p

For fields F of characteristic not p containing a primitive pth root of unity, we determine the Galois module structure of the group of pth-power classes of K for all cyclic extensions K/F of degree p. The foundation of the study of the maximal p-extensions of fields K containing a primitive pth root of unity is a group of the pth-power classes of the field: by Kummer theory this group describe...

متن کامل

GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE p

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .

متن کامل

GALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY FOR EMBEDDABLE CYCLIC EXTENSIONS OF DEGREE p

Let p > 2 be prime, and let n,m ∈ N be given. For cyclic extensions E/F of degree p that contain a primitive pth root of unity, we show that the associated Fp[Gal(E/F )]-modules H(GE , μp) have a sparse decomposition. When E/F is additionally a subextension of a cyclic, degree p extension E/F , we give a more refined Fp[Gal(E/F )]-decomposition of H (GE , μp).

متن کامل

Se p 20 04 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .

متن کامل

A pr 2 00 5 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F . In 1947 Šafarevič initiated the study of Galois groups of maximal pextension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2005

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2005.01.003