Gallai-Ramsey numbers for rainbow S^{+}_{3} and monochromatic paths
نویسندگان
چکیده
منابع مشابه
Improved Upper Bounds for Gallai-Ramsey Numbers of Paths and Cycles
Given a graph G and a positive integer k, define the Gallai-Ramsey number to be the minimum number of vertices n such that any k-edge-coloring of Kn contains either a rainbow (all different colored) triangle or a monochromatic copy of G. In this work, we improve upon known upper bounds on the Gallai-Ramsey numbers for paths and cycles. All these upper bounds now have the best possible order of ...
متن کاملBipartite rainbow Ramsey numbers
Let G and H be graphs. A graph with colored edges is said to be monochromatic if all its edges have the same color and rainbow if no two of its edges have the same color. Given two bipartite graphs G1 and G2, the bipartite rainbow ramsey number BRR(G1; G2) is the smallest integer N such that any coloring of the edges of KN;N with any number of colors contains a monochromatic copy of G1 or a rai...
متن کاملTripartite Ramsey numbers for paths
In this article, we study the tripartite Ramsey numbers of paths. We show that in any two-coloring of the edges of the complete tripartite graph K(n, n, n) there is a monochromatic path of length (1− o(1))2n. Since R(P2n+1,P2n+1) = 3n, this means that the length of the longest monochromatic path is about the same when two-colorings of K3n and K(n, n, n) are considered. © 2007 Wiley Periodicals,...
متن کاملMulticolor Ramsey Numbers for Paths and Cycles
For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...
متن کاملMonochromatic tree covers and Ramsey numbers for set-coloured graphs
We extend results on monochromatic tree covers and from classical Ramsey theory to a generalised setting, where each of the edges of an underlying host graph (here, either a complete graph or a complete bipartite graph), is coloured with a set of colours. Our results for tree covers in this setting have an application to Ryser’s Conjecture. Every r-partite r-uniform hypergraph whose edges pairw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2020
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2310