Galerkin least squares finite element method for the obstacle problem
نویسندگان
چکیده
منابع مشابه
Least-squares finite-element lattice Boltzmann method.
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimizatio...
متن کاملAdaptive Least Squares Finite Element Methods for the Stokes Problem
Adaptive least-squares nite element methods, including the standard and the weighted versions, for the Stokes problem in the velocity-vorticity-pressure formulation are presented in the article. The most signiicant features of the proposed adaptive methods are that the a posteriori error estimators do not involve ux jumps across interelement boundaries, that the local problems for error estimat...
متن کاملLeast-Squares Finite Element Methods
Least-squares finite element methods are an attractive class of methods for the numerical solution of partial differential equations. They are motivated by the desire to recover, in general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of discrete compatibility conditions and the production of symmetric and positive definite discrete systems. The methods are...
متن کاملDiscontinuous Least-Squares finite element method for the Div-Curl problem
In this paper, we consider the div-curl problem posed on nonconvex polyhedral domains. We propose a least-squares method based on discontinuous elements with normal and tangential continuity across interior faces, as well as boundary conditions, weakly enforced through a properly designed least-squares functional. Discontinuous elements make it possible to take advantage of regularity of given ...
متن کاملA Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2017
ISSN: 0045-7825
DOI: 10.1016/j.cma.2016.09.025