Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities
نویسندگان
چکیده
منابع مشابه
Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem
Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter ǫ provided only that ǫ ≤ N. An O(N(lnN)) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumpti...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems
In this work, the bilinear finite element method on a Shishkin mesh for convection-diffusion problems is analyzed in the two-dimensional setting. A superconvergence rate O(N−2 ln N + N−1.5 lnN) in a discrete -weighted energy norm is established under certain regularity assumptions. This convergence rate is uniformly valid with respect to the singular perturbation parameter . Numerical tests ind...
متن کاملAdaptive Streamline Diffusion Finite Element Methods for Stationary Convection-diffusion Problems
Adaptive finite element methods for stationary convectiondiffusion problems are designed and analyzed. The underlying discretization scheme is the Shock-capturing Streamline Diffusion method. The adaptive algorithms proposed are based on a posteriori error estimates for this method leading to reliable methods in the sense that the desired error control is guaranteed. A priori error estimates ar...
متن کاملSuperconvergent Finite Element Methods on A Shishkin Mesh for Convection-Di usion Problems
In this work, the bilinear nite element method on a Shishkin mesh for convection-diiusion problems is analyzed in the two-dimensional setting. A su-perconvergent rate O(N ?2 ln 2 N + N ?3=2) in a discrete-weighted energy norm is established under certain regularity assumption. This convergent rate is uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2011
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-2011-02526-3