G-Closed fields and imbeddings of quadratic number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

Unramified Quaternion Extensions of Quadratic Number Fields

The first mathematician who studied quaternion extensions (H8-extensions for short) was Dedekind [6]; he gave Q( √ (2 + √ 2)(3 + √ 6) ) as an example. The question whether given quadratic or biquadratic number fields can be embedded in a quaternion extension was extensively studied by Rosenblüth [32], Reichardt [31], Witt [36], and Damey and Martinet [5]; see Ledet [19] and the surveys [15] and...

متن کامل

Cohen-Lenstra Heuristics of Quadratic Number Fields

We establish a link between some heuristic asymptotic formulas (due to Cohen and Lenstra) concerning the moments of the p–part of the class groups of quadratic fields and formulas giving the frequency of the values of the p–rank of these class groups. Furthermore we report on new results for 4–ranks of class groups of quadratic number fields.

متن کامل

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

Hermite's Constant for Quadratic Number Fields

CONTENTS We develop a method to compute the Hermite-Humbert con1 . Introduction stants 7 K n of a real quadratic number field K, the analogue of the 2. Bounds for Minimal Vectors of Humbert Forms classical Hermite constant 7 n when Q is replaced by a quadratic 3. Examples extension. In the case n = 2, the problem is equivalent to the deReferences termination of lowest points of fundamental doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1976

ISSN: 0022-314X

DOI: 10.1016/0022-314x(76)90022-6