Fuzzy Classification Functions in the Methods of Fuzzy c-Means and Regularization by Entropy
نویسندگان
چکیده
منابع مشابه
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولFuzzy C-Means Clustering With Regularization by K-L Information
Gaussian mixture model or Gaussian mixture density model(GMM) uses the likelihood function as a measure of fit. We show that just the same algorithm as the GMM can be derived from a modified objective function of Fuzzy c-Means (FCM) clustering with the regularizer by K-L information, only when the parameter λ equals 2. Although the fixed-point iteration scheme of FCM is similar to that of the G...
متن کاملFuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods
This article explains how to apply the deterministic annealing (DA) and simulated annealing (SA) methods to fuzzy entropy based fuzzy c-means clustering. By regularizing the fuzzy c-means method with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function, well known in statistical mechanics, is obtained, and, while optimizing its parameters by SA, the minimum of t...
متن کاملRelative entropy fuzzy c-means clustering
Pattern recognition is a collection of computer techniques to classify various observations into different clusters of similar attributes in either supervised or unsupervised manner. Application of fuzzy logic to unsupervised classification or clustering methods has resulted in many wildly used techniques such as fuzzy c-means (FCM) method. However, when the observations are too noisy, the perf...
متن کاملFuzzy C-means and Entropy Based Gene Selection by Principal Component Analysis in Cancer Classification
Microarray analysis is used in human cancer diagnosis and tumor classification. However, microarray data often have high dimensionality and small sample size. Gene selection is a significant preprocessing of the discriminant analysis of microarray data to select the most informative genes from thousands of genes. In this paper, a gene selection method proposed for cancer classification in two s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Systems
سال: 1998
ISSN: 0915-647X,2432-9932
DOI: 10.3156/jfuzzy.10.3_548