Further Inequalities for the Weighted Numerical Radius of Operators

نویسندگان

چکیده

This paper deals with the so-called A-numerical radius associated a positive (semi-definite) bounded linear operator A acting on complex Hilbert space H. Several new inequalities involving this concept are established. In particular, we prove several estimates for 2×2 matrices whose entries A-bounded operators. Some of obtained results cover and extend well-known recent due to Bani-Domi Kittaneh. addition, improvements generalized Kittaneh obtained. The given by Feki in his work represent generalization refinements also presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

New Reverse Inequalities for the Numerical Radius of Normal Operators in Hilbert Spaces

Let (H ; 〈·, ·〉) be a complex Hilbert space and T : H → H a bounded linear operator on H. Recall that T is a normal operator if T T = TT . Normal operator T may be regarded as a generalisation of self-adjoint operator T in which T ∗ need not be exactly T but commutes with T [5, p. 15]. An equivalent condition with normality that will be extensively used in the following is that ‖Tx‖ = ‖T ∗x‖ fo...

متن کامل

Inequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces

Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10193576